首页 >> 行业知识 >>行业知识 >> 数控-飞马特等离子切割机切割工艺
详细内容

数控-飞马特等离子切割机切割工艺

       数控等离子机切割工艺参数的选择对切割质量、切割速度和效率等切割效果的影响是至关

重要的。正确使用数控等离子机进行高质量的快速切割,必须对切割工艺参数进行深刻地理解

和掌握。

   一、切割电流: 它是最重要的切割工艺参数,直接决定了切割的厚度和速度,即 切割能力。

造成影响:

      1、切割电流增大,电弧能量增加,切割能力提高,切割速度是随之增大;

      2、切割电流增大,电弧直径增加,电弧变粗使得切口变宽;

      3、切割电流过大使得喷嘴热负荷增大,喷嘴过早地损伤,切割质量自然也下降,甚至无法

进行正常切割。

     因此,在切割前要根据材料的厚度正确选用切割电流和相应的喷嘴。

      二、切割速度: 最佳切割速度范围可按照设备说明选定或用试验来确定,由于材料的厚薄

度,材质不同,熔点高低,热导率大小以及熔化后的表面张力等因素,切割速度也相应的变化。

主要表现:

     1、切割速度适度地提高能改善切口质量,即切口略有变窄,切口表面更平整,同时可减小

变形。

     2、切割速度过快使得切割的线能量低于所需的量值,切缝中射流不能快速将熔化的切割熔

体立即吹掉而形成较大的后拖量,伴随着切口挂渣,切口表面质量下降。

     3、当切割速度太低时,由于切割处是等离子弧的阳极,为了维持电弧自身的稳定,阳极斑

点或阳极区必然要在离电弧最近的切缝附近找到传导电流地方,同时会向射流的径向传递

更多的热量,因此使切口变宽,切口两侧熔融的材料在底缘聚集并凝固,形成不易清理的

挂渣,而且切口上缘因加热熔化过多而形成圆角。

    4、当速度极低时,由于切口过宽,电弧甚至会熄灭。由此可见,良好的切割质量与切割速

度是分不开的。

    三、电弧电压: 一般认为电源正常输出电压即为切割电压。等离子弧 切割机通常有较高的

空载电压和工作电压,在使用电离能高的气体如氮气、氢气或空气时,稳定等离子弧所需的电

压会更高。当电流一定时,电压的提高意味着电弧焓值的提高和切割能力的提高。如果在焓值

提高的同时,减小射流的直径并加大气体的流速,往往可以获得更快的切割速度和更好的切割

质量。

     四、工作气体与流量: 工作气体包括切割气体和辅助气体,有些设备还要求起弧气体,通

常要根据切割材料的种类,  厚度和切割方法来选择合适的工作气体。 切割气体既要保证等离

子射流的形成,又要保证去除切口中的熔融金属和氧化物。过大的气体流量会带走更多的电弧

热量,使得射流的长度变短,导致切割能力下降和电弧不稳;过小的气体流量则使等离子弧失

去应有的挺直度而使切割的深度变浅,同时也容易产生挂渣;所以气体流量一定要与切割电流

和速度很好的配合。现在的等离子弧切割机大多靠气体压力来控制流量,因为当枪体孔径一定

时,控制了气体压力也就控制了流量。切割一定板厚材料所使用的气体压力通常要按照设备厂

商提供的数据选择,若有其它的特殊应用时,气体压力需要通过实际切割试验来确定。最常用

的工作气体有:氩气、氮气、氧气、空气以及H35、氩-氮混合气体等。

      1、氩气在高温时几乎不与任何金属发生反应,氩气等离子弧很稳定。而且所使用的喷嘴与

电极有较高的使用寿命。 但氩气等离子弧的电压较低,焓值不高,切割能力有限,与空气切割

相比其切割的厚度大约会降低 25%。另外,在氩气保护环境中,熔化金属的表面张力较大,要

比在氮气环境下高出约 30%,所以会有较多的挂渣问题。即使使用氩和其它气体的混合气切割

也会有粘渣倾向。因此,现已很少单独使用纯氩气进行等离子切割。

       2、氢气通常是作为辅助气体与其它气体混和作用,如著名的气体 H35(氢气的体积分数

为35%,其余为氩气)是等离子弧切割能力最强的气体之一,这主要得利于氢气。由于氢气

能显著提高电弧电压,使氢等离子射流有很高的焓值,当与氩气混合使用时,其等离子射流的

切割能力大大提高。一般对厚度70mm以上的金属材料,常用氩+氢作为切割气体。若使用水

射流对氩+氢气等离子弧进一步压缩,还可获得更高的切割效率。

     3、氮气是一种常用的工作气体,在有较高电源电压的条件下,氮气等离子弧有较好的稳定

性和比氩气更高的射流能量,即使是切割液态金属粘度大的材料如不锈钢和镍基合金时,切口

下缘的挂渣量也很少。氮气可以单独使用,也可以同其它气体混和使用,如自动化切割时经常

使用氮气或空气作为工作气体,这两种气体已经成为高速切割碳素钢的标准气体。有时氮气还

被用作氧等离子弧切割时的起弧气体。

     4、氧气可以提高切割低碳钢材料的速度。使用氧气进行切割时,切割模式与火焰切割很想

像,高温高能的等离子弧使得切割速度更快,但是必须配合使用抗高温氧化的电极,同时对电

极进行起弧时的防冲击保护,以延长电极的寿命。

       5、空气中含有体积分数约 78%的氮气,所以利用空气切割所形成的挂渣情况与用氮气切

割时很想像;空气中还含有体积分数约 21%的氧气,因为氧的存在,用空气的切割低碳钢材料

的速度也很高;同时空气也是最经济的工作气体。 但单独使用空气切割时,会有挂渣以及切口

氧化、增氮等问题,而且电极和喷嘴的寿命较低也会影响工作效率和切割成本。

      五、喷嘴高度: 指喷嘴端面与切割表面的距离,它构成了整个弧长的一部分。由于等离子

弧切割一般使用恒流或陡降外特征的电源,喷嘴高度增加后,电流变化很小,但会使弧长增加

并导致电弧电压增大,从而使电弧功率提高;但同时也会使暴露在环境中的弧长增长,弧柱损

失的能量增多。在两个因素综合作用的情况下,前者的作用往往完全被后者所抵消,反而会使

有效的切割能量减小,致使切割能力降低。通常表现是切割射流的吹力减弱,切口下部残留的

熔渣增多,上部边缘过熔而出现圆角等。另外,从等离子射流的形态方面考虑,射流直径在离

开枪口后是向外膨胀的,喷嘴高度的增加必然引起切口宽度加大。所以,选用尽量小的喷嘴高

度对提高切割速度和切割质量都是有益的,但是,喷嘴高度过低时可能会引起双弧现象。采用

陶瓷外喷嘴可以将喷嘴高度设为零,即喷口端面直接接触被切割表面,可以获得很好的效果。

      六、切割功率密度: 为了获得高压缩性的等离子弧切割电弧,切割喷嘴都采用了较小的喷

嘴孔径、较长的孔道长度并加强了冷却效果, 这样可以使得喷嘴有效断面内通过的电流增加, 即

电弧的功率密度增大。但同时压缩也使得电弧的功率损失加大,因此,实际用于切割的有效能

量要要比电源输出的功率小,其损失率一般在 25%~50%之间,有些方法如水压缩等离子弧切

割的能量损失率会更大,在进行切割工艺参数设计或切割成本的经济核算时应该考虑这个问题。

        举例:在工业中使用的金属板厚大多是在 50mm 以下,在这个厚度范围内用常规的等离

子弧切割往往会形成上大下小的割口,而且割口的上边缘还会导致切口尺寸精度下降并增加后

续加工量。  当采用氧和氮气等离子弧切割碳钢、铝和不锈钢时,当板厚在 10~25mm 范围内

时,通常是材料越厚,端边的垂直度越好 ,其切割棱边的角度误差在 1 度~4 度。当板厚小于

1mm,随板厚的减小,切口角度误差从 3 度~4 度增加到 15 度~25 度。

       一般认为,这种现象的产生原因是由于等离子射流在割口面上的热输入不平衡所致,即在

割口的上部等离子弧能量的释放多于下部。这个能量释放的不平衡,与很多工艺参数密切相关,

如等离子弧压缩程度、切割速度及喷嘴到工件的距离等。增加电弧的压缩程度可以使高温等离

子射流延长,形成更为均匀的高温区域,同时加大射流的速度,可以减小切口上下的宽度差。

然而,常规喷嘴的过度压缩往往会引起双弧现象,双弧不但会损耗电极和喷嘴,使切割过程无

法进行,而且也会导致切口质量的下降。另外,过大的切割速度和过大的喷嘴高度都会引起切

口上下宽度差的增加。

       高性能飞马特等离子切割系统集中了以往的科技成果,采用了全新的气体控制箱设计,为

用户提供了优异的切割质量和质量稳定性,最大化的生产效率,最小的运行成本,无与伦比的

加工适用性,能够以极低的运行成本获得比已往更佳的精细切割质量。在切割碳钢时,具有优

异质量和稳定性的精细特征零件。结合高精度的切割床,能得到极佳的小件和圆孔质量。在切

割不锈钢和铝材时,使用 N2/N2 ,H35(氩氢预混气)和 H35–N2 工艺,以及新的 F5 (氮氢

预混气)工艺,使薄板的切割质量明显提高。


地址:北京市朝阳区朝阳路1292创意园

电话:010-65434262  13120336986

公司传真:010-65434262

邮箱:vctiger@126.com 

扫一扫 加好友

浏览手机网站

分享至:

Copyright @ 2018 . All rights reserved. 京ICP0000号

技术支持: 博睿海航 | 管理登录